Generic Object-Oriented Database System

Konstantin Knizhnik

March 1, 1999

Contents
1 Introduction

2 GOODS server

2.1 Storage Memory Manager i e e
2.2 Transaction Managerot e
2.3 Page pool manager e
2.4 Object access MANAZET o . oL i e e e
2.5 Class information manager L. L oL
2.6 Optimization of object loading
3 Application interface to database
3.0.1 Intertask synchronization of object access,
3.0.2 Synchronization of object access by different database clients
3.0.3 Handling of database transactions L 0oL
3.0.4 Managing of client’s object cache oo oo
3.1 System abstraction layer
3.2 GOODS interface for C++ language L
3.2.1 Dynamic arrays o. .o e e e e
3.2.2 Sets . ..
3.2.3 Bf-tree ... e
3.2.4 Hash Table
3.2.5 H-Tree . . . o o o o o e
3.26 Blob
3.2.7 R-Tree . . o o o o o e
3.3 Running GOODS applications
3.3.1 Database configuration file oo o
3.3.2 Server monitor GOODSRV
3.3.3 Database browser
3.3.4 Running GOODS examples L
3.3.5 Measuring GOODS performance L
4 Installation of GOODS
4.1 Compilation of GOODS sources
4.2 Description of GOODS sources

5 Desripttion of client-server protocol

6 Distribution of GOODS

0~ ~1 O N

10
11
11
12
12
12
16
17
17
17
17
17
18
18
18
18
22
23
24

26
26
26

31

31

LIST OF TABLES 2

List of Tables

2 GOODS transaction performance test L 24
3 Parallel transaction log writes oL 25
5 GOODS transaction performance test with asynchronous writes 25
7 Performance of socket library 25
9 Performance of GOODS multitasking libraryo o000 25

List of Figures

1 Introduction

GOODS is Generic Object Oriented Database system using active client language independent model
of server-client interaction. All application logic is implemented and executed at clients while server is
responsible only for storing and retrieving objects, handling transactions, object locks, garbage collec-
tion, database backups and recovery. Metaobject protocol is used in implementation of client application
interface to database to provide transparent and flexible interaction with database. ”Generic” in abbre-
viation GOODS stands for capability to extend system to handle almost all possible object access and
synchronization strategies. Using ”aspect oriented” approach makes it possible to changes object access
management policies without affecting application code. Notation and ideas of ” aspect-oriented” approach
was taken from the works of Kickzales. Different strategies, such as standard serialized transaction model
or optimistic model can be used as well as models fitting specific needs of concrete application.

GOODS 1s fully distributed database. Database consists of a number of storages, each of them can
be located at different nodes of network. Storage is controlled by storage server, which is responsible for
handling database requests relevant to this storage as well as for interaction with other servers to perform
database wide operations. Client can work with arbitrary number of databases each time. Each persistent
object is stored in concrete storage and it’s location can’t be changed. Location of object within database
is mostly transparent for client (client should not worry about in which storage object is situated), but
it is possible for client to attach object to concrete storage. Global database operations (operations
affecting more than one storage in database) such as global transaction commit, garbage collection and
object locking are handled automatically by database system using various algorithms to synchronize
activities of each storage server. Online database backup and scheme modification are possible without
stopping client working with database. Lazy object conversion approach is used for implementing scheme
modification. Different client can simultaneously work with different versions of class definitions.

GOODS was designed to achieve maximum performance of handling object requests. Various algo-
rithms of caching and prefetching objects and storage pages are used to reach this purpose. By splitting
work into separate threads of control GOODS makes it possible to use all benefits of parallel execution
especially at multiprocessor architectures. Specially designed library provides system independent in-
terface for multitasking (classes and methods for creating and synchronization of tasks, including such
synchronization primitives as mutexes, events, semaphores). This library is used to implement client part
of database interface as well as GOODS database server itself. Using of metaobject protocol for handling
access to object makes it possible to specify specific algorithms for object caching and synchronization of
concurrent accesses, allowing to reach the highest level of performance for concrete application.

2 GOODS server

GOODS storage servers is divided into several components each of them is responsible for it’s own task and
interacts with other components by means of strictly defined interface. This components include storage
memory manager, transaction manager, page pool manager, object access manager and class information
manager. Such module design makes it possible to choose different implementations for each component
(most suitable for concrete application) and also to investigate efficiency of various database management
algorithms and strategies. Below is short description of each component.

2 GOODS SERVER 3

2.1 Storage memory manager

This manager is responsible for allocating and deallocating storage memory and object descriptors. In
GOODS indirect access model is used for interobject references. Each object has unique identifier (opid)
and there is table of descriptors providing mapping of object identifiers to physical offset within storage
file. This approach makes it possible efficient implementation of ”become” operator which changes type of
concrete object. In GOODS descriptor of object contains information about object class, size and location
in the storage file. Object descriptors table is implemented using mapped on memory file. Allocation of
storage memory in current implementation is done by using bit memory map. Each bit of this map
corresponds to quantum of storage memory. Current size of the quantum 1s 32 bytes. Storage bit memory
map 1s itself stored in mapped on memory file.

Garbage collection is done using variation of standard mark-and-sweep algorithm with some extensions
for synchronization of GC processes at different storages. To perform GC one of storage servers is chosen
as coordinator and is responsible for initiating GC processes at each server and determination of global
end of mark phase at all servers.

GC can be initiated either when size of allocated objects exceed some predefined threshold value or
after some period spent by system in idle state. To initiate GC each server sends request to coordinator.
If coordinator decides that GC can be started, it poll other servers in database whether they are ready
to start GC. When server receive such request from coordinator and sends acknowledgment to start GC,
server change it’s state to "PRE-GC”. If acknowledgments are received from all servers coordinator
broadcasts to all servers request to start mark stage of GC. Otherwise (if some server is not available or
previous GC iteration still not finished at one of the servers) server broadcasts ?CANCEL” request to all
servers to make them exit from "PRE-GC” state.

Each storage server locally performs GC starting from storage root objects. Set of roots consists of
storage root object and instances of objects loaded by client at the moment of starting GC. Objects which
are already scanned considered to be marked with ”black” color, while objects referenced from ”black”
object but not yet marked are considered to be "gray”. All other object are ”white”.

When GC process finds out reference to object from other storage it sends message to this server with
this reference. To make this exchange of references more effective, buffering of external references is done
in GOODS. Before references will be send to client it is placed in export buffer (if such reference is not
already present in buffer). When buffer is full, it is sent to destination server. Server maintains separate
export buffer for each other server.

When there are no more ”gray” objects in storage, server sends message to coordinator containing a
vector of numbers of messages with external references sent and received by this server from other servers.
Coordinator maintains matrix of all such vectors. To determinate global end of mark stage coordinator
checks the following condition:

MTi, §].import = M[j,i].export, for all 7 j
where M i, j].import is number of external references received by server i from server j, and M[j,7].export
- number of messages sent by server j to server 1.

If this condition is true, then mark phase is completed at all servers and coordinator sends messages
to all servers to initiate sweep phase of GC. While sweep phase all ”white” objects are deallocated. The
same approach is used to collect unused version of object classes.

To prevent deallocation of objects instances of which were just allocated and not yet committed by
some transaction, all such instances are marked as ”black” before sweep phase. GC process is running in
background without affecting normal functioning of database. If object is changed during GC, difference
of sets of references from old and new versions of object is calculated. (To make this operation more
effective, not really set difference is calculated, but instead of it only references in near standing positions
are compared. This makes 1t possible to handle most common cases: references are is not changed or are
shifted due to insert or remove from array operation.) List of references from all old versions of object is
kept until the end of GC. PRE-GC state is necessary to synchronize moment when all servers start to keep
information about old versions of objects. So GC at each server will see all references between objects
which were available at the moment of GC initiation. If some objects are changed by transaction, GC will
have no access to this objects until transaction will be committed and all this objects are updated.

As far as different clients can have different version of objects, storage server should remember all

2 GOODS SERVER 4

versions of object used by active clients. This information can be removed when all clients update their
instances of object and object is scanned by GC (if GC was active when object was modified).

Sweep stage is performed incrementally, making it possible to allocate new objects in storage while
sweep process is active. System crash can cause some leak of memory due to garbage in memory allocation
bitmap (for example space allocated for extended objects by transactions which were active at the moment
of crash). Usually this leak of memory is very small (if any) and it is more significant to recover server
as fast as possible. But it is possible to completely reconstruct bitmap after recovery (clean bitmap and
then mark only space used by objects present in object index).

Allocation of object descriptors is performed using list of free object descriptors. As far as system
fault can leave list in inconsistent state special checks are used in all operations with the list. If list 1s
corrupted it will be completely rebuild at sweep stage of next GC (in normal situation GC only appends
deallocated descriptors to this list).

Usually objects are allocated in file continuously (unless bitmap is fragmented), so object’s body can
cross page boundary. Usually continuous allocation provides good performance, because objects which
are created together will be with big probability accessed together. So continuous allocation of objects
will reduce page trashing. But for some classes of objects is preferable to place each object at separate
page. B-tree page is an example of such kind of objects. As far as page size in GOODS is application
dependent parameter which can be changed in any moment, the only thing we can ask memory manager
to do with such objects is to align it’s position in file on object size boundary (more precisely, on pow of
2 which is greater or equal than object size). By such alignment we can guaranty that object will never
cross page boundary unless page size is smaller than object size.

2.2 Transaction manager

Transaction manager is responsible for handling all database updates as atomic and recoverable actions.
Transaction can be either local (only one server participates in transaction) or global. Tn last case two-
stage transaction commit protocol is used to guarantee global database state consistency. When global
transaction is committed one of the servers participated in this transaction (one with lowermost identifier)
is chosen to be coordinator. Coordinator assigns to transaction global identifier; writes it in global trans-
action history file and sends 1t back to the client. Client then sends local parts of transaction to all servers
participated in this transaction together with identifier of coordinator and global identifier of transaction
assigned to this transaction by coordinator. Coordinator then waits for response from all servers partic-
ipated in this transaction (stage T). Receiving it’s part of transaction server writes it to transaction log
and sends message to coordinator reporting that he is ready for global transaction commit. When coordi-
nator receives acknowledgements from all servers involving in transaction (stage IT) it marks transaction
in global transaction history file as globally committed, sends messages to all servers to finish transaction,
flush all transaction changes in database and send response to client about successful transaction commit.
Receiving such message from coordinator each other server participated in transaction will copy all object
modified by this transaction in storage and release locks set by this transaction. So it 1s possible that
client initiated transaction will receive reply from coordinator before this transaction is completed at all
servers involved in transaction. But because commit of transaction is handled by client agent at server,
server will not handle other requests from this client before transaction completion.

This protocol of transaction commit has uncertainty period, during which time the protocol might not
be able to complete if coordinator fail. The participants must wait until the coordinator recovers before
committing or aborting their local transactions. During this time, the local data accessed by transaction
is locked to ensure serializability. When server is in uncertain state it periodically resends request to
coordinator to obtain status of transaction until response will be received.

If at stage I coordinator receives ”aborted” message from one of the servers or if timeout of waiting reply
is expired then coordinator makes a decision that transaction is globally aborted, marks this transaction
as been aborted in global transaction history log and sends abort messages to all servers participated in
transaction and to client initiated this transaction.

While recovery from system fault server reads transaction log and checks whether transaction is local or
global. If transaction is global then server asks coordinator of this transaction for status of this transaction.

2 GOODS SERVER 5

Coordinator is looking in global transaction history log to check status of global transaction. If transaction
is marked as globally committed, then coordinators sends ”committed” reply to the server and this server
performs recovery of it’s local part of the transaction. Otherwise, if transaction is marked as ”aborted”
or if there is no entrance with such global transaction identifier in the global transaction log file then
coordinator responds to the server with ”aborted” message and server skips this transaction in it’s log. If
coordinator is not available at this moment then server has to wait until coordinator will be restarted.

When one of participants is failed after saving local part of transaction in the log but before sending
"ready-to-commit” message to coordinator, it will ask coordinator for transaction status while recovery.
If coordinator is still waiting for acknowledgement for transaction commit from servers participated in
transaction (timeout is not still expired), it can notice that request for transaction status refers to the
active transaction. In this case coordinator can treat ” get-transaction-status” request as acknowledgement
from this server to commit transaction (if server asks for transaction status it means that it has successfully
save local part of transaction in the log and is ready now to recover it). So coordinator doesn’t sends
reply for this request immediately but instead of it continues with processing of transaction. Reply will
be send to participants latter when transaction will be either committed or aborted.

When objects are restores from transaction log after crash, we should be careful with ”zombie” objects
- objects which were already deallocated by GC. Space of this objects can be reused for newly created
objects. When we restore such ”zombie” object from log it will override new objects allocated in the same
memory space. That is not a problem - new object will be also present in log and will be restored later.
But now we have several object descriptors refer to the same memory location. As far as there should be
no references to old object (which was once collected by GC), it will be deallocated at next GC iteration
and his space will be freed. But we also deallocate space of new objects which can be still accessible!

To avoid such dangerous behavior we keep track of address ranges occupied by all restored objects
during recovery procedure. If ranges of some two object overlap, then older one is removed (spaced used
by this object is deallocated and descriptor is inserted into the list of free descriptors). We use special
kind of binary tree for effective finding of overlapped regions (log can contain a big number of objects and
naive algorithm with complexity N % N is not acceptable). Each level of this tree represents range which
is power of 2. The depth of this tree is not much then 64 (offset in database file is 8 byte). So complexity
of checking ranges of all restored objects is C'* N, where C' is some constant.

When storage 1s recovered after the crash, file memory allocation bitmap is cleared and all used objects
(addressed by object index) are marked in this bit map. If some of the bitmap bits corresponds to the
object space are already marked and object is not a one recovered from transaction log, then we have
inconsistency in the object index. This inconsistency can be caused by garbage collector which free
unreferenced object, reuse it’s space for some newly allocated object, but index page with this descriptor
was not flushed to the disk before the crash. Fortunately if one of two overlapped objects is really accessible
from the storage root, then it should be in transaction log and so it was already recovered. So in this case
we can just remove descriptor of the second objects. If both of the objects are not recovered from the
transaction log, then both of them are inaccessible and we can safely remove one of them to reestablish
consistency of object index.

When size of transaction log exceeds some limit value, checkpoint process is started by transaction
manager. All modified pages and file buffers are flushed to the disks, afterwards log is truncated and
logging started from the beginning of the file. New sequential number is written at the beginning of the
log. This sequential number is incremented after each checkpoint and database close operation. This
sequential number is included in each transaction record written to the log. Only that records which
sequential number is equal to sequential number of the log will be restored while recovery after fault.
When checkpoint is completed, server sends messages to all possible coordinators of global transactions
in which this server can be involved (servers with identifiers less than identifier of this server) informing
them about checkpoint completion. By receiving such message from server 1 coordinator can remove from
global transaction log all entries relevant to the server with sequential number less than current sequential
number of server i minus one. Subtracting one i1s necessary because transactions with this sequential
numbers can be saved by backup and retrieved by restore procedure.

Transaction manager is also responsible for managing online backup procedure. Two types of backups
are now supported by GOODS server: snapshot backup and permanent backup. Snapshot backup allows

2 GOODS SERVER 6

to produce snapshot of storage state. If disk failure will happened then it is possible to restore locally
consistent state of storage for the time of backup completion (if global transaction are used, then global
state of database can be not consistent because backup is local to storage server so snapshots at each server
are not synchronized). Permanent backup process can be used to guarantee global database recovery in
any moment of time. Tt is assumed that log files can not be corrupted (they can be placed on some reliable
media - for example RATD disk massive). When backup process is active checkpoints are delayed till the
end of backup. To avoid delays in database functioning due to waiting of backup completion, limitation
for log size should be set to such value, which can guaranty that backup can be completed before this
limitation is reached. Backup can be started by triggering one of two conditions: timer signal or size
of log becomes greater than some specified value. Backup process first saves current contents of storage
file, storage memory allocation bit map and object descriptor table. Then it copies to the backup file
records from transaction log until it reaches the last one (records can be added to transaction log while
backup is in progress so synchronization is required). When last record is reached backup considered to
be completed and checkpoint procedure is invoked to truncate transaction log. After backup completion
operator has to switch backup media (tape) and make schedule for next backup - specify timeout and(or)
log size when next backup should be started.

The difference between permanent backup and snapshot backup is that snapshot backup has to save
only that part of transaction log file which was written at the moment when backup completes copying
of storage file and memory manager tables. Backup should save only information about transactions
completed before this moment to provide consistent snapshot of the storage. Checkpoint procedure is not
forced by snapshot backup.

Operations of writing transaction into the log should be performed synchronously, to guarantee that
after completion of this operation it will be possible to recover transaction in case of system fault. Total
throughput of database system can be significantly increased if separate synchronous writes are combined
into single write operation. Also performance can be increased if size and position of written data are
aligned to the operating system disk block size. In this case operating system should not previously
read contents of modified block from the disk. This algorithm is encapsulated into ”file” class. This
abstract class provides operating system independent access to files, guaranteeing correctness of concurrent
access operations to the file. Implementations of this class for different operating system use system
specific advanced calls (such as writev for Unix or overlapped TO for Windows-NT) to achieve maximal
performance. To provide merging of concurrent synchronous write requests, file implementation uses two
buffers in cyclic way. While one buffer is writing to the disk all other write requests are collected in other
buffer. When write operation for first buffer is completed, roles of buffers are changed and following write
requests will be placed in first buffer. Size of buffer is aligned to the size of operation system disk block,
so no overhead of reading content of modified block is present. In case of using gathered 1O functions
(such as writev) it is possible to avoid coping of all written data to buffer, but instead of this construct
vector of segments to be written on disk.

Tt is possible in GOODS to switch off synchronous writes to transaction logs (use normal buffered write
requests) if operating system can guarantee that all modified buffers will be flushed to disk before system
halt. That is possible if UPS is used to prevent power faults and operating system itself is considered to
be enough reliable. Performance can be dramatically increased in this case.

2.3 Page pool manager

Page pool manager provides efficient access to storage file. To improve IO operation performance, page
pool is used for caching most recently used pages and buffering 1O requests. Special synchronization policy
allows different clients to perform read/write operations in parallel. Algorithm is similar with one used
by operation systems to control access to file buffers. Each page has BUSY and WAIT flags and event
object on which tasks accessing this page can wait. When page is read from file BUSY flag is set, so any
other task trying to access this page will set WAIT flag and sleep on correspondent event object. When
read operation is completed, WAIT flag is checked and if it is set then event object is signaled awaking
all waiting tasks. While page is used by some tasks (they copy data to or from it) USED counter in page
header is not zero. This counter prevents page replacing algorithm from throwing this page from the

2 GOODS SERVER 7

cache.
The storage page size is application dependent parameter and can be changed without affecting storage
data file. By default the operating system page size is used as a value for this parameter.

2.4 Object access manager

Object access manager controls locking of objects, maintains information about instances of objects loaded
by clients, send notifications to clients when object is modified and also synchronize access to objects by
different components of storage server.

Two kinds of locks are supported: exclusive and shared. Only one process can lock object in exclusive
mode and several - in shared. Lock requests can be either blocked or not-blocked. In first case process
requesting lock will be blocked until requested lock 1s granted. In case of non-blocking requests if granting
lock is impossible then negative answer is returned immediately. In GOODS ”honest policy” of granting
locks is used: lock requested first will be granted first. So even if requested lock is compatible with current
locks set on the object, this request can be blocked because there are more blocked lock requests for this
object. There is only one exception from this rule: shared locks can be upgraded to exclusive despite to
presence of other blocked requests.

As far as different components of storage server can access the same object simultaneously, some
synchronization mechanism is needed. Object access manager provides methods for two type of object
accesses: reading and writing, implementing ” multiple readers single writer” discipline.

Object access manager maintains for each object list of object instances loaded by client processes.
When object is changed this list is scanned and all processes having instance of this object (except one
which has modified this object) are send a notification message. For correct garbage collection it is
necessary to know about all objects and references from this objects presented in client processes. As far
as object access manager has this information, garbage collector process requests information about all
such references from object access manager during mark phase and before sweep phase.

As far as client can have deteriorated version of object and follow references from this object instance,
it is necessary to prevent deallocation by garbage collector of the object, referenced only from deteriorated
instances (so no more references to this object are present in database). When object is modified, object
access manager compares set of references in old and new version of the objects. All references in old
version of the object which are not present in new version are inserted in ”old-reference-list”, explored
by garbage collector. This references are kept in this list until all clients will update their instances of
objects.

2.5 Class information manager

GOODS uses "active-client” model of client-server interaction. All application logic is programmed at
client application and servers are responsible only for fetching and storing objects and synchronizing
access to them. So server is not need to know to much about contents of objects, it views an object as
the array of references and raw data (knowledge about object references is necessary to perform garbage
collection). So object is stored at server in system independent format (big-endian byte order, 6-bytes
references containing object storage identifier and number of the object within storage). To simplify for
server work with objects (and as a result - increase server performance) objects are stored at server in
format with all references placed before any other data.

GOODS server stores information about classes of all objects allocated in this storage. Class infor-
mation includes class name, size of fixed and varying part of class, number of references in fixed and
varying parts and also information about each object field: names, type and offset within object. This
information is used by server only to calculate number of references in the object while garbage collection
and building closure of objects for sending to client. But storing complete information about the class
definition at server is significant to provide work of clients with different database schemes (class defi-
nitions). GOODS allows online modification of database scheme without termination of clients working
with database. Moreover one client can use old version of class definition, while another a new one. Such

2 GOODS SERVER 8

lazy object conversion strategy is really necessary for system with a lot of different client’s applications
and working time Tx24.

When client is loading object from server it looks at its class identifier. If client had already loaded
object of such class then mapping between database class and local application class was already set.
Otherwise client sends to the server request to provide information about class with such identifier. The
server responds with full class description. The client then looks for local application class with the
same name. If no such class is found application is abnormally terminated. Otherwise client compares
signatures of storage and application classes. If signatures are the same then client just establish new
mapping between storage class identifier and application class.

If signatures are not equal then it is considered that client has new version of the class and special
class descriptor for converting object from old representation to the new one is constructed. Conversion
procedure looks for definition of all components in old class description and tries to find fields with the
same name in new class description. If field with the same name is present in boss class definition, then
conversion procedure checks whether conversion between old type of the field and new one 1s possible.
Now the only restriction for types compatibility is that reference type can be only assigned to references
type. All other kinds of conversion (real-jinteger, integer-;real, fixed array of scalars-;scalar, varying
array-;fixed array...) are possible. Certainly some of this conversion can cause loss of data. Then client
sends new signature of class to the server and receives new storage class identifier assigned to this class
descriptor by server. When object of such class is loaded from the server it is converted to new class
format and new storage class identifier is assigned to this object. If such object will be modified and
send back to the storage it will be saved in new class format. So lazy approach is used to perform object
conversion when class definition is changed.

When client is going to store object in storage (as a result of making reference to this object from
another persistent object) it checks whether this object has assigned storage class identifier. Tf none then
client sends to the server description of object class and waiting for response containing storage class
identifier assigned to this class. When server receives such request from client, it looks through definitions
of all classes in the storage and if class with the same signature is found replies with it’s identifier.
Otherwise new class definition is added to storage and new assigned storage class identifier is returned to
the client.

As far as there are can be a lot of object class modifications, garbage collection procedure is also
necessary to collect unused classes. When mark stage of garbage collector is performed classes of all ” black”
objects are also marked. At sweep stage class information manager is asked to remove all unmarked classes.
As far as class can be registered by application but object instances of this class are not yet created at this
moment, deletion of this class definition is delayed to the moment when all client processes working with
this class descriptor will be terminated. To implement this strategy of delayed class deallocation all clients
are assigned successive numbers at the time of connection to the server. Each class descriptor stores the
maximal client identifier accessed to this class (when client sends request to provide class identifier for
concrete storage class descriptor, identifier of this client is compared with client identifier stored in this
class descriptor and if first is bigger then it replaces client identifier stored in this class descriptor). Class
descriptor can be removed when there are no object instances of this class in storage and there are no
more clients with identifiers less or equal to class identifier stored in this class descriptor.

Class descriptors are stored in storage as other objects but special range of object identifiers is used
for class descriptor objects. Tn GOODS class storage identifier is stored in one word (two bytes) of object
descriptor, so the maximal number of classes in the storage is limited to 216 = 65535. So first 2'6 entries
in object descriptor table are reserved for class descriptors. Creating new class descriptors and updating
of existing ones is performed using standard transaction mechanism. To improve performance of class
descriptor lookup, class information manager maintains array of copies of all class descriptors in memory
and also has hash table for fast search of class with specified name.

2.6 Optimization of object loading

When client application accesses persistent object which is not present in client cache, database interface
sends request for loading object to the server where this object is located. As far as transmission data

3 APPLICATION INTERFACE TO DATABASE 9

through network is relatively slow operation and moreover only small portion of total time is used to
transfer data itself (it is not so much difference in time between sending 1 byte or 100 bytes of data) there
are two ways of increasing application performance. First is to increase size of object cache and improve
cache management algorithms. We will speak about this approach latter. And another opportunity to
increase performance is to predict which objects will be retrieved by client and to send in reply message
not only requested object, but all objects which will be with big probability requested by client in near
future. So when client accesses such object, client database interface finds that it is already present in
object cache and no request to server need to be send. Certainly it i1s very difficult task to predict which
objects will be retrieved by application in near future. Looks like no single best solution exists for this
problem.

There are several main approaches to determinate set of objects which should be send to client. One
alternative is to ask programmer to explicitly specify clusters of objects. If one objects from the cluster is
requested, then all objects from this cluster are transmitted to the client. Disadvantage of this approach
is that it violates transparency of manipulation with persistence objects. Another approach is to maintain
statistic of requesting objects by clients. So if server knows that after requesting object A client with high
probability will request object B, then object B can be send to client together with object A. Disadvantage
of this approach 1is that it consuming a lot of server memory and CPU. Also while this approach provides
very best result for some applications it can be inefficient for other applications. And the third approach is
to try to construct some kind of object closure including in this closure all (or some of) objects referenced
from requested objects. The size of closure should be limited to avoid increase of network traffic due to
transfer of useless data.

In GOODS server third approach is currently used (certainly other approaches can be easily imple-
mented and tested by redefinition of one method). When object is requested by client, server includes in
reply all objects which satisfy to three of following conditions:

1. object is directly accessible from requested object,
2. client doesn’t have this object,

3. total size of all objects in reply is limited to some predefined constant.

3 Application interface to database

Application interface to database is divided into two parts: application dependent and application in-
dependent. Application independent part is represented by abstract class dbs_storage which contains
reference to abstract class dbs_application which declares methods handling database requests to appli-
cation (notification about object modification, disconnect handler). Class dbs_storage declares methods
for fetching, locking and unlocking objects, retrieving and storing class descriptors, manipulations with
transactions,... Implementations of this class are responsible for sending requests to server and receiving
replies and notifications from the server. This class is not responsible for synchronizing access to the stor-
age and for allocation, unpacking and deallocation of object instances in clients application. Instead of this
implementation of dbs_storage just place object instance or class descriptor loaded from server in spe-
cially supplied buffer and future operations with this buffer are performed by application dependent part
of database interface. Application dependent part of database interface implements dbs_application
protocol and contains methods accessing dbs_storage and providing synchronization of storage access
as well as object packing and unpacking. Also handling of storage notifications is performed by methods
defined in this part of database interface.

Interface with database is organized in such way that it is possible for different applications written
using different languages to work with the same database. In current version of GOODS only interface
for C++ is provided. This is because C++ i1s the most popular object oriented language now, and also
providing most performance efficient executables. Interface to Java language is planned in near future.

Different classes of application may have very different requirements to the database system. For
example for banking applications standard serializable transaction model may be most relevant one. Ap-
plications in such system should have an illusion of monopoly work with database: transaction should not

3 APPLICATION INTERFACE TO DATABASE 10

see changes made by other transactions of other clients. It is isolation model of database organization.
But for office document flow controlling system cooperation model may be more preferable. In that model
applications cooperate with each other and changes made by one application should be visible by other
applications.

As far as 1t is not possible to incorporate all possible strategies in single database system, then generic
(or universal) object oriented database should have facilities to extend it’s functionality and behavior
depending on applications requirements.

Modern programming systems have to deal with a lot of different aspects: user interface, memory
management, multitasking, database access, security... A traditional approach of dividing application
into modules will not work if each module will be responsible for all of this aspects. If for example
logic of synchronization access to objects will be scattered through the all application, then it will very
difficult to understand such code, debug or modify it. To make application more clear, simple and
extensible 1t will be goods idea to separate code responsible for different aspects of system behavior.
This separated aspects can be combined together at compilation phase (or at runtime) using metaobject
protocol approach. According to GOODS interface with client applications the following aspects of the
system are implemented by metaobjects:

e Intertask synchronization of object access
e Synchronization of object access by different database clients
e Handling of database transactions

e Managing of client’s object cache

Lets look at this aspects more closer:

3.0.1 Intertask synchronization of object access

Modern applications very often has to deal with a lot of concurrent jobs: handling user interface, retriev-
ing data from database, performing some background recalculations... It is very difficult to implement
such system without using multitasking. Multitasking can be either explicit or implicit. Implicit multi-
tasking is more transparent for programmer (for example each method invocation can be considered as
separate thread of control), but it is not so flexible as explicit multitasking and as far as aspects of it’s
implementation are hidden from programmer, some kind of unexpected by programmer behavior can take
place. That 1s why in GOODS we decide to use explicit multitasking model where programmer has to
create and synchronize tasks explicitly using such synchronization object as mutexes, events, semaphores.
Synchronization of access to the object by different tasks forms separate aspect of system behavior which
is implemented by means of metaobject protocol.

The default policy used in GOODS for intertask object access synchronization is mutual exclusion
model. Only one task can access object at the same time. Each GOODS object has associated monitor
object which synchronizes access to the object instance by different tasks. When method of the object
is invoked by some task, monitor associated with this object is locked to prevent other tasks from using
this object until this task returns from invoked method. Nested calls to objects are also allowed. This is
simple and powerful strategy but it has some serious disadvantages, one of them is possibility of deadlock
- mutual blocking of several tasks.

This model of intertasking object access synchronization is similar with one used in Java (with all
methods explicitly considered to be ”synchronized”). Each GOODS object also has two methods ”wait”
and "notify”. When a task, executing in a monitor needs to wait for another task to do something, it calls
wait(). This causes task to unlock the monitor and go to sleep. Since monitor is unlocked, another thread
can enter monitor and supply the information the first task is waiting for. The task signals the waiting
task by calling notify(). Once the first task is signaled it wakes up and begins waiting for the monitor to
become available. When the second task finishes its processing, it unlocks the monitor, allowing the first
task to reacquire the monitor and finish what 1t started.

3 APPLICATION INTERFACE TO DATABASE 11

Unfortunately, there is one serious problem with this signaling mechanism, which can cause deadlocks.
If method of object O1 invokes method of object O2, which in it’s turn calls wait() method, then only the
monitor of object O2 1s unlocked, while the monitor of object O1 remains locked. Something that looks
tempting at first is to modify behavior of metaobject so that calling wait() unlocks all monitors a task has
acquired. This would be a mistake. It would imply that anytime you call a function that could in turn
potentially call wait, you cannot guarantee that another task won’t change the state of the object.

As far as monitor objects takes some space it is very space consuming solution to have separate monitor
object for each application object. Instead of this ”turnstile” of monitor objects is used in GOODS. When
object should be locked and it has no attached monitor object, then new monitor object is taken from the
turnstile (if there are no more free monitor objects, then turnstile is extended). When object is unlocked,
monitor object continues to be attached to this object, but it can be taken away and used for another
object. So the total number of monitor objects doesn’t exceed maximal number of simultaneously accessed
objects and there is high probability that when object is accessed it already has attached monitor object.

3.0.2 Synchronization of object access by different database clients

There are two main approaches to object access synchronization in database: pessimistic and optimistic
(certainly some combination of this two approaches can be used). With pessimistic approach object
locks are usually used to prevent other clients from accessing the object. This approach guarantees that
object changes can not be lost. Main disadvantages of this approach are possibility of deadlocks and
reducing concurrency. Optimistic approach can be successively used if possibility of conflict (simultaneous
modification of object by different clients) is small and transaction can be easily restarted. With this
approach check for correctness of object access is made only when transaction is committed. If some of
the objects touched by transaction has been changed by some other transaction then conflict takes place
and current transaction should be restarted. There are a number of different metaobjects in GOODS
database interface implementing different variations of this approaches. Below is a picture illustrated
hierarchy of this metaobjects. Description of this metaobjects can be found in ”mop.h” header file.
Abstract Metaobject
Basic Metaobject
Optimistic Metaobject
Repeatable Read Optimistic Metaobject
Pessimistic Metaobject
Lazy Pessimistic Metaobject
Repeatable Read Pessimistic Metaobject
It is possible to achieve higher level of concurrency between different clients if semantic of concrete

object class is explored. For example for ”queue” object PUT and GET methods can be executed con-
currently without mutual exclusion (in spite of they are both mutators) as far as queue is not empty. Tt
is possible because this methods work with different ends of queue. Using of specific metaobject protocol
for such objects can get advantage from this knowledge of object semantic.

3.0.3 Handling of database transactions

All changes in database should be made by means of consistent and atomic sequences of operations -
transactions. Transaction transfers database from one consistent state to another. There are a lot of
different transaction models: flat transactions, nested transactions...() Simply speaking all this models
have different answers for two questions: when transaction should be committed or aborted and when
changes made by transaction should become visible for other transactions. As far as different application
may require different transaction models we want to left answer on this questions for method of metaclass.
So by definition of own metaobject programmer can introduce it’s own model of transactions.

Default implementation of transactions in GOODS implicitly opens nested transaction each time
GOODS object is accessed and commits all nested transactions when control returns from last invoked
method. So programmer should not worry about definition of points where to open and to close transaction
(but it is possible to explicitly open and close nested transaction and so to create long-live transaction).
Transaction can be aborted, in this case all modification of persistent object are discarded. Such implicit

3 APPLICATION INTERFACE TO DATABASE 12

transaction scheme is highly compatible with idea of transparent database interface and also 1s more error
safe.

3.0.4 Managing of client’s object cache

As far as client application has to send requests to server for every accessed object, performance of
application mostly depends on efficiency of object caching strategy. Usually standard LRU algorithm is
used for replacing entries in cache, but for database this discipline is not always good choice. Application
accessing database frequently performs search among big number of objects. With traditional LRU cache
replacement algorithm this scanned objects (most of them will not be more accessed in near future) will
completely replace all cache entries by throwing away all other objects.

To avoid such undesirable behavior special modification of LRU algorithm is used in GOODS. Object
cache is divided into two parts: frequently used objects (FUO) and objects used only once (OUOO). Both
of parts are controlled by ordinary LRU discipline using double linked lists (object is excluded from the
list when it is accessed and inserted at head of the last after the end of access). But if object is taken from
OUQO list and it is not at the head of the list then object is considered to be frequently used one and
reattached to the FUO list. (As far as object is present in OUOO list and is not at the head of the list
then we can make a conclusion that it was already accessed by some other place in the program and looks
like it can be accessed once again). So object scanned while database search can not replace objects from
FUO part of the cache. But GOODS leaves opportunity for programmer to define own cache managing
policy because cache is also controlled by metaclass methods.

Current GOODS database interface consists of some kernel database requests (such as set lock, open
transaction, load object...) and a number of basic metaobjects, implementing most common models of
object access organizations. Deriving from this basic metaobjects it is possible to create specific metaob-
jects to handle specific requirements of concrete application. Usually most of the work can be done by
methods of base metaclass and only few things should be redefined or added.

3.1 System abstraction layer

3.2 GOODS interface for C++ language
GOODS supports the following scalar types as components of database classes:

char 1 byte character
natl unsigned 1 byte integer
int1 signed 1 byte integer
nat2 unsigned 2 bytes integer
int2 signed 2 bytes integer
nat4 unsigned 4 bytes integer
int4 signed 4 bytes integer
nat8 unsigned 8 bytes integer
int8 signed 8 bytes integer
real4 4 bytes ANSII floating type
real8 8 bytes ANSII floating type

It is better to use these type aliases instead of native C types to provide portability of your application
(for example type long can be 4 bytes at one system and 8 bytes at another). References to another
GOODS objects are supported by means of ”smart pointers” implemented by template class ref:

class A;
ref<A> ra;

It is possible to construct arrays and structures of specified above atomic types:

3 APPLICATION INTERFACE TO DATABASE 13

char str[10];
struct coord {
int x;
int y;
};
coord points[10];

It is possible to specify classes with varying size of object. Such class should have one varying component
size of which is determined at the time of object creation:

class person : public object {
public:
char name[1];

static tree_node* create(char* name) {

int name_len = strlen(name);

return new (name_len) person(name, name_len);
T
METACLASS_DECLARATIONS (person, object);

protected:
person(const char* name, size_t name_len)
object(self_class, name_len)

{
memcpy (this->name, name, name_len+1);

}
};
field_descriptor& person::describe_components()
{

return VARYING(name);

}

Class can have only one varying component and it should be the last one. Classes with varying components
are used in GOODS C++ interface to implement arrays and provide efficient way for representing classes
with constant (immutable) string identifier (like person and name).

As far as in most of implementation of C+4 metaclass information is not available and database needs
to know format of objects, programmer has to specify this information manually. To make this work more
easy a number of macros and functions are supported in GOODS interface for C++.

GOODS supports persistency only for objects of persistent capable classes. Class is persistent capable
if it is derived from GOODS ”object” class and implements some methods and constructors needed by

GOODS client library. Such class should have:
1. Specific constructor for initialising object when it is loaded from database;
2. Static component self_class containing class descriptor of this class;

3. Overloaded function ”classof” returning class descriptor determined by static type of function argu-
ment;

4. Virtual method describe_components, which returns information about all components in the class.

All this components are declared by macro

METACLASS_DECLARATIONS(CLASS, BASE_CLASS)

A programmer needs only to implement the member function describe_components, which provides
information about all class instance variables. To make process of class variables description more easy
and error safe five special macros are provided:

3 APPLICATION INTERFACE TO DATABASE 14

NO_FIELDS method should return this value if there are no variables in class

FIELD(x) describing atomic or structural field

ARRAY (x) describing fixed array type

MATRIX(x) describing two dimensional fixed array type

VARYING(x) describing varying array

If there are structural components in class you should define function describe_field to describe
components of this structure:

class B_page : public object {
friend class B_tree;
enum { n = 1024 }; // Minimal number of used items at not root B tree page
int4 m; // Index of first used item

struct item {
ref<object> p; // for leaf page - pointer to ’set_member’ object
// for all other pages - pointer to child page
skey_t key;

field_descriptor& describe_components() {
return FIELD(p), FIELD(key);

}
inline friend field_descriptor& describe_field(item& s) {
return s.describe_components();

}

} eln*2];

public:

METACLASS_DECLARATIONS(B_page, object);
+;
field_descriptor& B_page::describe_components()
{

return FIELD(m), ARRAY(e);
}

REGISTER(B_page, object, optimistic_scheme);

Macro REGISTER can be used to define default implementations for methods classof, constructor and
to create class descriptor for this class:

REGISTER(CLASS, // name of the class
BASE, // name of base class
MOoP // metaobject for this class
);

It is possible for template class to be persistent capable, but programmer has to explicitly register
different template instantiations in database. The usual way is to use typedef operator to create alias to
concrete template instantiation and then register class with this alias name in the database by means of
REGISTER macro.

Each storage has predefined root object. To change type of this abstract root object you should use
"become” method. To find out if storage is already initialized special virtual method is_abstract_root
is defined in class "object”. This method returns true if type of the root object has not been changed yet
and false otherwise.

3 APPLICATION INTERFACE TO DATABASE 15

Multitasking library requires some initialization before it can be used. So the first statement in the
program (in main function) should be invocation of static method task::initialize. The single parameter
of this method specifies stack size reserved for main thread of the program.

Usually sequence of steps to initialize storage looks something like this:

class my_root : public object {
public:

METACLASS_DECLARATIONS(my_root, object);

my_root() : object(self_class)
{

}
void initialize() comnst {
if (is_abstract_root()) {
ref<my_root> root = this;
modify(root)->become(new my_root);

}
}
s
int main(int argc, char* argv[])
{
task::initialize(task::huge_stack);
database db;
char* cfg_name = new char[strlen(argv[1])+5];
sprintf (cfg_name, "Ys.cfg", argv[i]);
if (db.open(cfg_name)) {
ref<my_root> root;
db.get_root(root);
root->initialize();
. // do something with database
db.close();
}
}

You can find template of simple database application in file ”"template.cxx”. All accesses to persistent
objects should be encapsulated inside object methods. It is an error to pass reference to some component
of object:

class text {

public:
char str[1];

};

main () {
ref<text> t;

3 APPLICATION INTERFACE TO DATABASE 16

printf("text; %s\n", t->str); // !!! ERROR

The reason of such restriction is that persistent object can be at any moment thrown away from
memory by cache replacement algorithm, when there 1s no active method for this object. The right
implementation for the sequence above is:

class text {
protected:
char str[1];
public:
void print();

};
void text::print()
{
printf("text; %s\n", str);
T

main () {
ref<text> t;

t->print () ;

You should try to avoid direct access to object components whenever it is possible: it is better to make
all object instance variables protected and encapsulate all access to them in object methods. Encapsula-
tion makes you application simpler and more flexible, and with GOODS C++ interface it also increase
performance, because access to self components within object methods requires not extra runtime over-
head.

GOODS C++ interface provides library of some widely used container classes for efficient access to
persistent data. The following subsections briefly describes these classes.

3.2.1 Dynamic arrays

GOODS interface for C++ provides template class for dynamic arrays. Parameter of the template should
be either builtin primitive type (natl, int4, real8...) or persistent object reference. Tt is important to
notice, that template instances should be explicitly registered in database by REGISTER macro. The
following array template instantiations are defined and registered in dbscls.h: ArrayOfByte, ArrayOflnt,
ArrayOfDouble and ArrayOfObject. If you want to use array of some other component type you should
first create type alias by means of typedef operator and then register this type in the database:

typedef array_template ArrayOfShort;
REGISTER(Array0fShort, object, pessimistic_repeatable_read_scheme);

Dynamic array template provides methods for direct access to array components:

T operator[](nat4 index) const;
T getat(nat4 index) const;
void putat(nat4 index, T elem);

Methods for getting number of components in the array, for copying and appending array components
are also available. Dynamic arrays also implement stack protocol by providing such methods as Push(T
value), Pop(), Top(). Methods insert(int index, int count, T value) and remove(int index, int count) can
be used to add or remove elements from the dynamic array.

Class String is implemented as subclass of ArrayOfChar class and defines extra methods for strings
manipulation.

3 APPLICATION INTERFACE TO DATABASE 17

3.2.2 Sets

GOODS class library provides CODASYL-like sets to represent on-to-many and many-to-many relation-
ships between objects. The set consists of one owner and many member components. The set owner is
represented by set_owner class and provides methods for inserting, removing member to/from the set
and iterating through the set members. The set members are accessed through set_member class, which
contains member key and virtual function to calculate short key representation (used in B-tree). Both
set_member and set_owner classes contain pointer to attached object, so the object can be a member of
some number of sets and an owner of some other sets at the same time.

3.2.3 B*-tree

B-tree is classical data structure for DBMS. It minimize number of disk read operations needed to locate
object by key and preserve order of elements (range requests are possible). Also maintenance of B-tree
can be done efficiently (insert/remove operations have log(N) complexity).

In classical implementation of B-tree, each B-tree page contains set of pairs jkey, page-pointer;. The
nodes at the page are ordered by key, so binary search can be used to locate item with greater or equal
key. Tn B*-tree, pointers to members are stored only in leaf pages of B-tree. All other pages contain
pointers to child pages.

B*-Tree in GOODS is implemented as subclass of set_owner class. Pointers of leaf pages of B*-tree
refer to objects of set_member class, which contain references to the objects included in B_Tree. Nodes of
the B*-tree pages contain short form of key (currently nat8 type is used), which can be calculated from
the object key by virtual method of set_member class (usually it is just first 8 bytes of original key). Such
structure allows objects to be included in several B-trees and also makes search operation more effective,
because only small set_member objects are accessed during search (if there are several objects with the
same value of short key). B_Tree class defines methods for inserting new objects in the tree, removing
objects from the tree and searching objects by the key.

3.2.4 Hash Table

Class hash_table provides fast almost constant time access to the object by the key. GOODS class library
for C++4 provides implementation of non-extendable hash table operating with string keys. Hash table
can be effectively used if upper limit for number of objects in hash table is known and doesn’t exceed size
of table more than several times and hash table can fit in operating memory.

3.2.5 H-Tree

H-Tree is combination of hash table and index tree. It can be used when size of hash table is too large
to make possible represention of hash table as single object (as array of pointers). H-Tree first calculates
normal hash key and then divide it into several groups of bits. First group of bits is used as index in the
root page of H-Tree, second group of bits as index in the page referred from the root page, and so on. ..
So if the size of the hash table is 1000003, than H-tree with pages, containing 128 pointers, requires access
to three pages to locate any object. So total size of loaded objects is 128*6*3 = 2304 bytes instead of
6Mb if hash_table class with such size is used (size of reference in GOODS is 6 bytes).

3.2.6 Blob

Most of modern database applications have to deal with large objects, used to store multimedia and text
data. GOODS class library has special class Blob to provide efficient mechanism for storing/extracting
large objects. As far as loading large object can consume significant time and memory, Blob object allows
scattering of large objects into parts (segments), which can be accessed sequentially. Moreover, Blob
object takes advantage of multitasking model of GOODS and makes it possible to load the next parts
of the Blob object in parallel with handling (playing, visualization,...) of the current part of Blob. Such
approach minimizes delays caused by loading object from the storage.

3 APPLICATION INTERFACE TO DATABASE 18

3.2.7 R-Tree

R-tree provides fast access to spatial data. Idea of R-Tree is the same as in B-Tree — use hierarchical
structure with high branching factor to reduce number of disk accesses. The R-tree is the extension of the
B-tree for multidimensional object. A geometric object is represented by its minimum bounding rectangle
(MBR). Non-leaf nodes contain entries of the form (R, ptr) where ptr is a pointer to a child node in the
R-tree; R is the MBR that covers all rectangles in the child node. Leaf nodes contain entries of the form
(obj-id, R) where obj-id is a pointer to the object, and R is MBR of the object. The main innovation
in the R-tree is that father node are allowed to overlap. This way, the R-tree can guarantee at least
50Guttman. GOODS R_tree class is based on Guttman’s implementation with quadratic split algorithm.
The quadratic split algorithm is the one that achieves the best trade-off between splitting time and search
performance.

3.3 Running GOODS applications
3.3.1 Database configuration file

To specify configuration of database you should create configuration file with the following format:

<number of storages = N>
<storage identifier 0>: <host name>:<port0>

<storage identifier N-1>: <host name>:<portN-1>

Storage identifier should be successive integer numbers used as indices in the array of storages. You can
see examples of this configuration files: ”unidb.cfg”, ”guess.cfg”. In distributed environment configuration
file can be accessed from the server computer using some network file system protocol (for example NFS)

or can be replicated to client computers.

3.3.2 Server monitor GOODSRV

To run database you should first start all storage servers at each node of the net specified in configuration
file. You can write server program yourself, but GOODS provides standard server implementation ” good-
srv” supporting some basic monitoring functions. To run this program you should specify the name of
database. which should be equal to the name of configuration file without extension (extension assumed to
be ”.cfg”). First line of this configuration file specifies number of storages in the database. All successive
lines specifies locations of database servers. Each line consists of three fields separated by colon: storage
identifier, host name and port number.

Parameters of GOODSRV can be specified in one of two files: ”goodsrv.cfg” and ”database.srv”.
First one specifies parameters common for all servers and second - parameters of the server of specific
database. If some parameter is defined in both of the configuration file, then value of the parameter from
”database.srv” 1s used. If some parameter is not specified in configuration files, then default values will
be used. The following table describes all available parameters:

Parameter Type | Unit Default | Meaning Set
value
memmgyr .- int. Kb 8192 Initial size of memory map file. -
init_map_file_size Increasing this parameter will re-
duce number of memory map re-
allocations.
memmgr .- int. Kb 4096 Initial size of index file. Increasing -
init_index_file_size this parameter will reduce number
of index reallocations.

3 APPLICATION INTERFACE TO DATABASE

19

Parameter

Type

Unit

Default
value

Meaning

Set

memmgr .gc_init_timeout

nt.

sec

60

Timeout for initiation of GC pro-
cess. Coordinator of GC will wait
replies from other server for GC
initiation request during specified
period of time

memmgr .-
gc_response_timeout

nt.

sec

86400

Timeout for waiting acknowledg-
ment from coordinator to finish
mark stage and perform sweep
stage of GC. If no response will
be received from GC coordinator
within this period, GC will be
aborted at the server.

memmgy .-
gc_init_allocated

nt.

Kb

1024

Size of allocated memory since last
GC, after which next garbage col-
lection process will be initiated

memmgy .-
gc_init_idle_period

nt.

sec

If non-zero then specifies idle pe-
riod interval, after which GC will
be initiated. If memory manage-
ment server receives no request
during specified period of time,
then GC process will be initiated.

memmgy .-
gc_init_min_allocated

nt.

Kb

Minimal size of allocated mem-
ory to start GC in idle state (see
previous parameter). GC will
be initiated only if idle period
timeout is expired and more than
gc_init_min_allocated memory
was allocated since last GC

memmgr .-
gc_grey_set_threshold

nt.

refs

1024

Specify maximal extension of GC
grey references set. When grey
references set is extended by more
than specified number of refer-
ences, then optimization of order
of taking references from grey set
(improving references locality) is
disabled and breadth first order of
object reference graph traversal is
used.

memmgr . -
max_data_file_size

nt.

Kb

If non-zero, then set limitations
for the size of storage data file.
After reaching this value, GC is
forced and all allocation requests
are blocked until enough free space
is collected.

memmgr .max_objects

nt.

objects

If non-zero, then set limitation for
number of objects in the storage
After reaching this value, GC is
forced and all allocation requests
are blocked until some object will

be collected by GC

3 APPLICATION INTERFACE TO DATABASE

20

Parameter

Type

Unit

Default
value

Meaning

Set

memmgr .map_file_name

string

* . map

Name of file with memory alloca-
tion bitmap.

memmgr . index_file_name

string

*.idx

Name of file with object index.

transmgr.-
permanent_backup

bool.

0/1

0

Specifies whether permanent or
snapshot backup type should be
used. If snapshot backup type is
used, then backup is terminated
after saving consistent state of
database and checkpoints will be
enabled. Otherwise, if permanent
backup type is used, then backup
terminates and forces checkpoint
after saving all records from trans-
action log. Permanent backup can
be used to ensure, that storage can
be restored after fault and loosing
storage data file.

transmgr.max_log_size

nt.

Kb

8192

Size of transaction log after reach-
ing which checkpoint 1s started.
After checkpoint completion, writ-
ing to the log file continues from
the beginning.

transmgr.-
preallocated_log_size

nt.

Kb

This option forces transaction
manager to preallocate log file and
doesn’t truncate it after check-
point. In this case file size should
not be updated after each write
operations and transaction perfor-
mance 18 increased about 2 times.

transmgr.wait_timeout

nt.

sec

600

Timeout for committing global
transaction. Coordinator will wait
for replies of other servers partic-
ipated in global transaction until
expiration of this timeout.

retry_timeout

nt.

sec

Timeout for requesting status of
global transaction from coordina-
tor. When server performs recov-
ery after crash, it need to know
status of global transactions, in
which it has been participated,
So it polls coordinators of global
transactions, using this timeout as
interval for resending request to
coordinator.

transmgr.-
checkpoint_period

nt.

sec

Specifies time interval between
two checkpoint. Checkpoint can
be forced either by exceeding some
limit value of transaction log size
or after some specified period of
time (if this timeout is non-zero).

3 APPLICATION INTERFACE TO DATABASE 21

Parameter Type | Unit Default | Meaning Set
value

transmgr.- int. bytes 0 Enable or disable dynamic reclus- | +

dynamic_reclus- tering of object. If dynamic

tering_limit reclustering of objects 1s enabled,

all objects modified in transaction
are sequentially written to new
place in the storage (with the as-
sumption that objects modified in
one transaction will be also ac-
cessed together in future). This
parameter specifies maximal size
of object for dynamic reclustering.
Zero value of this parameter dis-
ables reclustering.

transmgr.log_file_name | string | - "+.log" | Name of transaction local log file -
transmgr.- string | - "+ his" | Name of global transaction history -
history_file_name file

objmgr.lock_timeout int. sec 600 Deadlock detection timeout. If | +

lock can’t be granted within spec-
ified period of time, server con-
sider that deadlock takes place
and abort one or more client pro-
cess to destroy deadlock.
poolmgr.page_pool_size | int. pages 4096 Size of page cache. Increasing this -
value will improve performance of
disk 1O operations.
poolmgr.data_file_name | string | - "+ . odb" | Name of storage data file -
server.cluster_size int. bytes 512 Maximal size of object cluster to | +
be sent to client. Server can per-
form optimization of sending ob-
jects to clients. Instead of sending
one object for each request, it can
send several objects (cluster of ob-
jects), including in cluster objects
referenced from requested object
(but only if total size of objects
will not exceed cluster_size pa-
rameter).

1. Last column of this table marks parameters, which values can be changed by set command in
interactive mode.

2. Symbol # used in the file name in this table stands for concrete database name (parameter passed

to GOODSRY).

Other arguments of goodsrv are:
goodsrv <storage name> [<storage-id> [<trace-file-name> | "-"1]

By default goodsrv starts in interactive dialogue mode, allowing user to execute some administrative
operations with database as well as to see database usage parameters. Also if GOODS server was compiled
with trace option. trace information will be outputted at the terminal. If you specify log file name as
last argument to goodsrv, messages will be also saved in the specified file. Below is a list of all valid
commands for goodsrv monitor:

3 APPLICATION INTERFACE TO DATABASE 22

help [COMMAND] print information about command(s)
open open database

close close database

exit terminate server

log [LOG_FILE_NAME|"-"] set log file name

show [CATEGORIES] show current server state

monitor PERIOD [CATEGORIES] periodical monitoring of server state
backup FILE_NAME [TIME [LOG_SIZE]] schedule online backup process

stop backup stop backup process

restore BACKUP_FILE_NAME restore database from the backup
trace [TRACE_MESSAGE_CLASS] select trace messages to be printed
set PARAMETER=INTEGER_VALUE set server parameter value

CATEGORIES is some of servers clients memory transaction classes. By default all categories are shown.

TIME is interval of time in seconds and LOG_SIZE is transaction log size after reaching one of this
parameters backup procedure will be started. Default value for this parameters are 0, which means that
backup will be started immediately.

SHOW_OPTIONS is a list of some of the following options “servers clients memory transaction classes. If
you skip this parameter, all possible characteristics are displayed.

PARAMETER is one of valid server parameters (see table above). Execute help set command to obtain
list of all valid parameter names.

TRACE_MESSAGE_CLASS is a space separated list of message classes. Only messages belonging to one of
the specified classes will be outputed. The complete list of message classes can be obtained by help trace
command.

3.3.3 Database browser

Database browser is a program which allows you to dump fields of objects in database. T want to make this
program as simple as possible and also system independent. The primary idea of writing this program is
to show how metainformation can be extracted from database. There are two versions of browser: console
application and CGI version using WWW browser to navigate through objects.

Browser can dump values of fields of all objects (including classes) stored in database storages. Console
version of database browser browser.cxx requires single command line argument, which specifies name of
database configuration file. Tt is not necessary to specify all servers in this configuration file, you only
have to describe that storages, objects from which you want to inspect. Certainly servers of these storages
should be previously started before you run ”browser” application. To refer object you should specify
storage and object identifier. It 1s possible to see list of available commands by typing ”help”.

CGI version of browser cgibrows.cxx provides much more user friendly interface. To be able to use
this browser you need some WWW server running at the computer where database storage is located.
For example it can be Microsoft Peer WebServer, included in NT-4.0 distribution, or Apache free WWW
server. You have to do some preparation before you can use the browser. You should edit file browser.htm
(name can be changed) to specify name of your host (localhost is possible) and path to cgibrows program
(cgibrows.exe in Windows). This program can be placed either in some default directory for CGI scripts
used by WWW server, or it is possible to register another directory in WWW server. It is preferable to
have cgibrows program in the same directory as database, otherwise you should specify full absolute path
to directory where database is located when opening browser. Be sure that user, under which name CGI
script will be executed, have enough permissions to access files and ports at local computer (GUESS by
default has no such permissions).

That 1s all with preparation of WWW browser for GOODS. Now you can open in your favorite WWW
browser the page browser.htm and specify database name and storage number. Database name is the
name of configuration file without extension. If configuration file and cgibrows program are located in
different directories, you should specify absolute path to this file. By default storage with identifier 0 will
be opened. To start browser press Open button. Browser will dump fields of root object. Browser outputs
non NULL reference fields as pair: storagelD:objectID. To navigate through objects, click on reference

3 APPLICATION INTERFACE TO DATABASE 23

field. Do not forget about Back, Forward and Go buttons, which can help you in navigation. You can
browse database from any computer which can access WWW server.

3.3.4 Running GOODS examples

You can try to play with some examples of GOODS application programs:

guess.cxx — game ”Guess an animal”,

unidb.cxx — "university” database,

testblob.cxx — work with binary large object

tstbtree.cxx — program for measuring of GOODS performance

Program ”guess.cxx” is the simplest database application using optimistic approach for synchronization.
This program creates binary tree with information about animals (or anything else which you have en-
tered). To run this program you should first start database server by the following command:

> goodsrv guess

Then you can start any number of client’s sessions by running program guess in separate windows. Op-
timistic approach in this application means that if while you are answering program questions and other
user has performed update of the same branch of the tree then you have to start from the beginning.

Program "unidb. cxx" is a sample of GOODS application working with distributed database. Structure
of this database is very simple. University database contains B_tree of students and B_tree of professors.
Each student has topic of diploma work and is attached to one of professors (his tutor). Professor is
an owner of unordered set of students (group) attached to him. Students can be added, removed or
reattached from one professor to another. Professors also can be added and removed, but it is only
possible to remove professor which is not someone’s tutor. This application shows a simple menu allowing
user to select action and also uses GOODS change notification mechanism to handle database modification
done by other clients (each time student or professor is added or removed by some database client, total
number of students and professors in the university shown at the top of menu is updated).

Objects in this application are distributed between to storages: student’s storage (0) and professor’s
storage (1). All student objects (and objects referenced from them, such as string and set_member
objects) are placed in this storage. All professor objects are placed in professor’s storage. To run this
application you need to start two servers:

terminal-1> goodsrv unidb 0
terminal-2> goodsrv unidb 1

Then you can start any number of clients by running program ”unidb” without any arguments at different
windows. You can see example of dealing with large multimedia objects in ”testblob” application. Two
classes from GOODS class library are used in this application: blob and hash_table. Class blob provides
incremental loading of big binary objects in parallel with it’s handling (for example you can unpack and
transfer data from buffer to audio device while next part of object is loading from database). Also
this application tests multitasking at client’s site. Program ”testblob” is very simple and have only few
commands, allowing you to insert, extract and remove files in(from) database. Type help command
to learn more about command syntax. To run this application you should activate database server by
issuing command ”goodsrv blob” and then start application itself. One of the most effective structure for
spatial objects is R-tree (proposed by Guttman). GOODS library contains R_tree class which implements
Guttman’s quadratic split algorithm. For testing of this class implementation very simple model of spatial
database is developed: tstrtree. All object in this program are placed in R-tree and H-tree (combination
of B*-tree and hash table) and can be accessed either by name or by coordinates. Configuration file for
this program is "rtree.cfg”. So issue command ”goodsrv rtree” to start server and command tstrtree to
run test program.

3 APPLICATION INTERFACE TO DATABASE 24

Parallel | Alpha- Alpha- PowerPC| PPro- PPro- SPARC- | PPro- Ultra-
pro- Server Server 120 Mk- | 200 200 station- 233 Sparc
cesses 2100 2100 Linux Linux WinNT | 20 2x50 | FreeBSD | 2x300
2x250 2x250 portable | portable | 4.0 Solaris 3.0 pthreads
Digital- | Digital- 2.5 portable
Unix 4.0 | Unix 4.0 pthreads
portable | pthreads
1 239 227 121 73 57 349 117 130
2 226 187 124 95 47 339 116 119
4 221 112 130 66 30 178 65 70
8 233 114 156 67 37 188 68 71
16 240 124 247 68 44 209 68 74

Table 2: GOODS transaction performance test

3.3.5 Measuring GOODS performance

Program tstbtree simulates parallel work of several client with database. To run this program you should
first start goodsrv server with the following parameters:

> goodsrv btree 0
and then run some amount of client applications by "spawn" utility, for example:
> spawn 32 8 tstbtree

This command will 32 times invoke "tstbtree'" program and at most 8 instances of this program will
be executed simultaneously. Each instance of "tstbtree" program inserts 100 records of size randomly
distributed in range of 6..1030 bytes in one of 4 B-trees, then 10 times repeats a loop of searching each
of this records in the B-tree and at the end removes all created records from the B-tree. So after the end
of test there are should be no records in database and it is possible to rerun test once again. As far as
not a performance of B-tree implementation itself but performance of GOODS server is measured, then
it was decided to reduce size of B-tree page to 4 entries to increase number of objects participated in
transactions.

It is interesting to investigate dependence between number of programs executed in parallel and total
system performance. In theory the best result should be obtained when there are exactly 4 concurrent
applications (mostly they all will work with different B-trees and no synchronization between them is
necessary). If there are more than 4 applications running in parallel then a lot of notification messages
used to synchronize caches of this applications will reduce total system performance. The following table
contains results (elapsed time in seconds of test execution) for some systems:

Graphic representation of this results

The time of this test execution mostly depends on time of synchronous writes to transaction log.
Improving of system performance in case of executing clients requests in parallel is mostly obtained by
merging synchronous write requests. The following table shows average number of merged synchronous
writes for different systems and number of clients running in parallel:

Graphic representation of this results

It is also interesting to measure database performance with transaction log synchronous writes option
switched off. In this case mostly efficiency of GOODS server components implementation and their
interaction is measured.

Graphicrepresentationo fthisresults

There are also two programs not working with database but which can be used for testing and measuring
performance of socket and multitasking libraries: testsock.cxx and testtask.cxx.

Test for socket is performed only with local clients (server and client are at the same computer). This
test consists of two programs (client and server) which interact with each other in the same way as in
normal GOODS applications. Client sends 1000000 requests to server, waiting for server response for each
request. Each client request consists of two parts: header and body. So sending request to server require
two socket write operation. This program mostly measures efficiency of socket library implementation at
concrete system (UNIX_DOMAIN sockets in Unix), but in case of Windows-NT/95 performance of GOODS
local sockets implementation is tested. Table below represents results for different systems (elapsed time
in seconds of test execution):

Program verb-+testtask+ measures performance of multitasking library. This test simply starts a
number of tasks (threads) each of them performs the following loop: wait for signal, enter critical section

3 APPLICATION INTERFACE TO DATABASE

25

Parallel processes | AlphaServer 2100 2x250 DigitalUnix pthreads | PPro-200 WinNT
2 1.009 1.854
2 1.845 2.948
8 1.805 1.953
16 1.758 1.767
Table 3: Parallel transaction log writes
Parallel | Alpha- Alpha- PPro- PPro- SPARC- | PPro- Ultra-
pro- Server Server 200 200 station- | 233 Sparc
cesses 2100 2100 Linux WinNT | 20 2x50 | FreeBSD | 2x300
2x250 2x250 portable | 4.0 So- 3.0 pthreads
Digital- | Digital- laris 2.5 | portable
Unix 4.0 | Unix 4.0 pthreads
portable | pthreads
1 28 47 19 22 102 29 40
2 23 30 21 13 87 26 27
4 21 30 17 17 90 21 27
8 24 41 21 21 137 21 31
16 39 56 24 33 174 24 37

Table 5: GOODS transaction performance test with asynchronous writes

Alpha- PPro-200 | PPro-200 | PPro-200 | SPARC- PPro-233
Server WinNT WinNT Linux station- FreeBSD
2100 4.0 4.0 20 2x50 | 3.0
2x250 WinSock- | GOODS Solaris portable
Digital- ets local 2.5
Unix sockets
4.0
374 275 25 109 541 86
Table 7: Performance of socket library
AlphaServer | AlphaServer | PPro-200 | PPro-200 | SPARC- PPro-233
2100 2x250 | 2100 2x250 | WinNT Linux station- FreeBSD
DigitalUnix | DigitalUnix | 4.0 portable 20 2x50 | 3.0
4.0 portable | 4.0 pthreads Solaris portable
2.5
pthreads
3 29 11 2 65 2

Table 9: Performance of GOODS multitasking library

4 INSTALLATION OF GOODS 26

4 Installation of GOODS

4.1 Compilation of GOODS sources

GOODS is now running under Windows-NT /95 and various Unix dialects. All system specific code is
encapsulated within few files and is accessed by abstract system independent interfaces: task.h, sockio.h
and file.h. There are several system specific implementations for this interfaces. To achieve maximal
performance advanced features of modern operating system are used, such as memory mapped files,
gathered io (writev), threads. That can be a source of problems with porting GOODS to some old Unix
dialects.

To build GOODS you should execute config script in source directory. You can specify name of
your system or let configuration script tries to guess target system itself. Configuration s cript only
copies one of system specific version of makefiles to the file ”“makefile”. There 1s common makefile for all
Unix systems ”"makefile.un1” containing targets and rules. All system specific makefiles only define some
parameters (such as CC, CFLAGS...) and include makefile.uni. The main difference between systems
(except name of C+4 compiler and compiler flags) are with type of multitasking library used by GOODS
(portable, implemented by setjmp/longjmp or based on Posix pthreads).

It is not necessary to run configuration scripts at Windows. I am using Microsoft Visual C++ 5.0 for
compiling GOODS. Makefile for windows has name makefile.mvc. There is special MAKE.BAT file which
invokes NMAKE and specifies the name of makefile.

After configuration just issue make command to build GOODS. The following targets will be build:

e Server library libserver.a (server.lib at Windows);
e Client library 1ibclient.a (client.1lib at Windows);
e Database storage server goodsrv;

e Database browser browser;

e Several tests and sample applications;

4.2 Description of GOODS sources

® async.cxx
Asynchronous event manager for portable multitasking library. Task with priority 0 repeatedly calls
Unix KBD,select function to find out channels ready to input/output.

e async.h
Specification of asynchronous event manager.

e browser.cxx Simple database browser. This application shows how metainformation can be extracted
from database storage.

e cgibrows.cxx
CGI version of database browser. Using this CGI program you can browse database objects from
WWW browser if WWW server is installed at your computer.

e class.cxx
Classes to support class information for client application at runtime. Methods of this classes are
responsible for building class and field descriptors, conversion of object instances when from storage
format to application representation and visa versa.

e class.h

Definition of classes providing reflection property to client application.

INSTALLATION OF GOODS 27

e classmgr.cxx

Storage class manager implementation.

e classmgr.h

Interface for storage class manager.

e client.cxx

Implementation of application independent client interface with storage.

e client.h

Definition of database storage interface for clients.

e config.h
Definition of some global types and constants used in GOODS.

e console.cxx

Implementation of GOODS console interface. This methods perform input and output data from
terminal.

e console.h

Definition of GOODS console interface.

e convert.h

Definition of functions for (un)packing atomic types from storage format (big endian, unaligned) to
application representation.

e ctask.cxx

Implementation of portable non-preemptive multitasking library, using setjmp/longjmp function for
context switching.

e ctask.h
Definition of classes used by portable non-preemptive multitasking library.

e database.cxx

Application dependent part of client interface with database. This part of interface is responsible
for synchronizing access to database, packing/unpacking objects, handling servers messages.

e database.h
Definition of application dependent part of client interface with database.

e dbscls.cxx

Implementation of application database classes: set, B-tree, hash table, blob, dynamic arrays and
strings.

e dbscls.h

Collection of application database classes.

e file.h

Abstract file interface. This interface provides operating system independent methods for working
with files.

e goods.h
Main include file for GOODS client application.

INSTALLATION OF GOODS 28

e goodsrv.cxx
Simple database storage server program. This storage server is powerful and flexible enough for
been used in various applications.

® gUESS.CXX

Sample GOODS application: game ” Guess an animal”.

e memmgr.cxx
Implementation of GOODS storage server memory manager with distributed and incremental garbage
collector.

e memmgr.h

Abstract interface for server memory manager.

e mmapfile.h

Interface for mapped on memory file.

® Mop.cXX
Implementation of basic metaobjects. Using this metaobject which cover most common database
access patterns, you can derive your own metaobject satisfying requirements of concrete application.

e mop.h
Metaobject protocol definition. This protocol is used in GOODS for controlling object access syn-
chronization aspects, transactions, and object cache management.

e multfile.cxx

Tmplementation of file consisting of several physical segment (operation system files). Such multifile
malkes it possible to overcome operating system limitation for maximal file size.

e multfile.h

Definition of multifile class.

e object.cxx
Implementation of object class - base class for all GOODS objects. Also object index used for
indirect object access is implemented in this file.

e object.h

Definition of object class - top class in object hierarchy.

e objmgr.cxx
Implementation of GOODS storage server object access manager. This manager is responsible for
handling object locks and notification of clients about object instance deterioration.

e objmgr.h
Definition of storage server object access manager interface.

e osfile.h
Definition of file class corresponding to operating system file. There are several implementation for
this class for different platforms.

e poolmgr.cxx

Implementation of GOODS storage server page pool manager. Page pool manager is responsible for
efficient work with database files.

INSTALLATION OF GOODS 29

e poolmgr.h

Definition of storage server page pool manager interface.

e protocol.cxx

Implementation of client-server protocol methods.

e protocol.h

Definition of protocol used for client-server and server-server communication.

e ptask.cxx

Implementation of multitasking library using Posix threads.

e ptask.h

Definition of classes used in multitasking library for Posix threads.

e refs.h
Definition of smart pointers for GOODS C++ interface.

e rtree.h

Definition of R-tree class (effective search structure for spatial objects)

e rtree.cxx

Implementation of R-tree class

® SErver.cxx

Database server methods implementation. This server is responsible for coordination of work of all
storage managers and interaction with clients.

e server.h

Definition of database storage server class.

e sockio.h
Abstract socket interface. Socket is reliable bidirectional connection used for implementation of
client-server and server-server communications.

® Spawn.cxx

Auxiliary utility for spawning sever parallel applications. This utility can be used for testing GOODS
performance.

e stdinc.h
List of include files common for all GOODS modules.

e stdtp.h

Definition of standard types and including standard system headers.

e storage.h

Definition of application independent client interface to GOODS storage.

e support.h

Set of support classes and functions for GOODS modules: dynamic arrays, buffers, hash functions...

e task.h

System independent multitasking interface. This header file contains definitions of following classes:
task, mutex, semaphore, event, eventex, semaphorex.

INSTALLATION OF GOODS 30

e template.cxx

Template for GOODS client application.

e testblob.cxx
Test program for binary large objects. This program can be used as example for creating your own
multimedia objects.

e testsock.cxx

Test program for testing socket performance.

o testtask.cxx

Test program for GOODS multitasking libraries.

e transmgr.cxx
Implementation of GOODS storage server transaction manager using maintaining log file for pro-
viding transaction recoverability. This manager handles local and global (distributed) transaction.
e transmgr.h

Definition of interface for storage server transaction manager.

e tstbtree.cxx

Test program for B-tree implementation in GOODS. This program can also be used for measuring

GOODS performance.

e tstrtree.cxx

Test program for R-tree implementation in GOODS (very simple spatial database).

e unidb.cxx

Example of GOODS application: ”university database”.

e unifile.cxx
Implementation of os_file class for Unix. This implementation supports concurrent access to file
by several tasks, merging of parallel synchronous write requests, alignment of synchronous writes to
operating system file block boundary. Two last capabilities greatly increase performance of server
by making process of transactions commit more efficient.

e unisock.cxx
Implementation of socket class for Unix.

e unisock.h
Definition of class representing Unix sockets.

e winfile.cxx
Implementation of os_file class for Windows. Optimizations include merging of synchronous write
into single request to operating system.

e w32sock.cxx
Implementation of socket class for Windows. This class uses WinSockets library for remote connec-
tions and provides own efficient implementation for local (within one computer) connection (UNTX
domain sockets analog). This local sockets implementation use cyclic buffers in shared memory and
is more than 10 times faster than WinSockets.

e w32sock.h

Definition of socket classes for Windows,

5 DESRIPTTION OF CLIENT-SERVER PROTOCOL 31

o wtask.cxx
Implementation of multitasking library for Windows.

e wtask.h
Definition of classes from multitasking library for Windows.

5 Desripttion of client-server protocol

6 Distribution of GOODS

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the Software), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

THE SOFTWARE IS PROVIDED ”AS 1S”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHOR OF THIS SOFTWARE BE LTABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

I will provide e-mail support and help you with development of GOODS applications.

